R Dataset / Package DAAG / bomsoi2001
November 27, 2023
On this R-data statistics page, you will find information about the bomsoi2001 data set which pertains to Southern Oscillation Index Data. The bomsoi2001 data set is found in the DAAG R package. You can load the bomsoi2001 data set in R by issuing the following command at the console data("bomsoi2001"). This will load the data into a variable called bomsoi2001. If R says the bomsoi2001 data set is not found, you can try installing the package by issuing this command install.packages("DAAG") and then attempt to reload the data with the library() command. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the bomsoi2001 R data set. The size of this file is about 8,046 bytes.
Southern Oscillation Index Data
Description
The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 1900-2001, are given. Australia's annual mean rainfall is an area-weighted average of the total annual precipitation at approximately 370 rainfall stations around the country.
Usage
bomsoi2001
Format
This data frame contains the following columns:
- Year
-
a numeric vector
- Jan
-
average January SOI values for each year
- Feb
-
average February SOI values for each year
- Mar
-
average March SOI values for each year
- Apr
-
average April SOI values for each year
- May
-
average May SOI values for each year
- Jun
-
average June SOI values for each year
- Jul
-
average July SOI values for each year
- Aug
-
average August SOI values for each year
- Sep
-
average September SOI values for each year
- Oct
-
average October SOI values for each year
- Nov
-
average November SOI values for each year
- Dec
-
average December SOI values for each year
- SOI
-
a numeric vector consisting of average annual SOI values
- avrain
-
a numeric vector consisting of a weighted average annual rainfall at a large number of Australian sites
Source
Australian Bureau of Meteorology web pages:
http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml
References
Nicholls, N., Lavery, B., Frederiksen, C.\ and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino – southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 3357-3360.
See Also
bomsoi
Examples
bomsoi <- bomsoi2001 plot(ts(bomsoi[, 15:14], start=1900), panel=function(y,...)panel.smooth(1900:2001, y,...)) pause()# Check for skewness by comparing the normal probability plots for # different a, e.g. par(mfrow = c(2,3)) for (a in c(50, 100, 150, 200, 250, 300)) qqnorm(log(bomsoi[, "avrain"] - a)) # a = 250 leads to a nearly linear plotpause()par(mfrow = c(1,1)) plot(bomsoi$SOI, log(bomsoi$avrain - 250), xlab = "SOI", ylab = "log(avrain = 250)") lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain - 250))$y, lwd=2) # NB: separate lowess fits against time lines(lowess(bomsoi$SOI, log(bomsoi$avrain - 250))) pause()xbomsoi <- with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33)) xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y rainpos <- pretty(bomsoi$avrain, 5) with(xbomsoi, {plot(cuberootRain ~ SOI, xlab = "SOI", ylab = "Rainfall (cube root scale)", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) ## Relative changes in the two trend curves lines(lowess(cuberootRain ~ SOI)) lines(lowess(trendRain ~ trendSOI), lwd=2) }) pause()xbomsoi$detrendRain <- with(xbomsoi, cuberootRain - trendRain + mean(trendRain)) xbomsoi$detrendSOI <- with(xbomsoi, SOI - trendSOI + mean(trendSOI)) oldpar <- par(mfrow=c(1,2), pty="s") plot(cuberootRain ~ SOI, data = xbomsoi, ylab = "Rainfall (cube root scale)", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) with(xbomsoi, lines(lowess(cuberootRain ~ SOI))) plot(detrendRain ~ detrendSOI, data = xbomsoi, xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI))) pause()par(oldpar) attach(xbomsoi) xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0)) # ordinary regression modelxbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,12)) # regression with MA(12) errors -- all 12 MA parameters are estimated xbomsoi.ma12 pause()xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI, seasonal=list(order=c(0,0,1), period=12)) # regression with seasonal MA(1) (lag 12) errors -- only 1 MA parameter # is estimated xbomsoi.ma12s pause()xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12), xreg = detrendSOI, fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, NA, NA, NA, NA), transform.pars=FALSE) # error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10 # NA's are used to designate coefficients that still need to be estimated # transform.pars is set to FALSE, so that MA coefficients are not # transformed (see help(arima))detach(xbomsoi) pause()Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)), type="Ljung-Box", lag=20)pause()attach(xbomsoi) xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12), xreg = poly(detrendSOI,2), fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)), transform.pars=FALSE) xbomsoi2.maSel qqnorm(resid(xbomsoi.maSel, type="normalized")) detach(xbomsoi)
Dataset imported from https://www.r-project.org.