R Dataset / Package datasets / cars
November 27, 2023
On this R-data statistics page, you will find information about the cars data set which pertains to Speed and Stopping Distances of Cars. The cars data set is found in the datasets R package. You can load the cars data set in R by issuing the following command at the console data("cars"). This will load the data into a variable called cars. If R says the cars data set is not found, you can try installing the package by issuing this command install.packages("datasets") and then attempt to reload the data with the library() command. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the cars R data set. The size of this file is about 308 bytes.
Speed and Stopping Distances of Cars
Description
The data give the speed of cars and the distances taken to stop. Note that the data were recorded in the 1920s.
Usage
cars
Format
A data frame with 50 observations on 2 variables.
[,1] | speed | numeric | Speed (mph) |
[,2] | dist | numeric | Stopping distance (ft) |
Source
Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.
References
McNeil, D. R. (1977) Interactive Data Analysis. Wiley.
Examples
require(stats); require(graphics) plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)", las = 1) lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red") title(main = "cars data") plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)", las = 1, log = "xy") title(main = "cars data (logarithmic scales)") lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red") summary(fm1 <- lm(log(dist) ~ log(speed), data = cars)) opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0), mar = c(4.1, 4.1, 2.1, 1.1)) plot(fm1) par(opar)## An example of polynomial regression plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)", las = 1, xlim = c(0, 25)) d <- seq(0, 25, length.out = 200) for(degree in 1:4) { fm <- lm(dist ~ poly(speed, degree), data = cars) assign(paste("cars", degree, sep = "."), fm) lines(d, predict(fm, data.frame(speed = d)), col = degree) } anova(cars.1, cars.2, cars.3, cars.4)
Dataset imported from https://www.r-project.org.