R Dataset / Package datasets / Nile
November 27, 2023
On this R-data statistics page, you will find information about the Nile data set which pertains to Flow of the River Nile. The Nile data set is found in the datasets R package. You can load the Nile data set in R by issuing the following command at the console data("Nile"). This will load the data into a variable called Nile. If R says the Nile data set is not found, you can try installing the package by issuing this command install.packages("datasets") and then attempt to reload the data with the library() command. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the Nile R data set. The size of this file is about 944 bytes.
Flow of the River Nile
Description
Measurements of the annual flow of the river Nile at Aswan (formerly Assuan
), 1871–1970, in 10^8 m^3, “with apparent changepoint near 1898” (Cobb(1978), Table 1, p.249).
Usage
Nile
Format
A time series of length 100.
Source
Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford University Press. http://www.ssfpack.com/DKbook.html
References
Balke, N. S. (1993) Detecting level shifts in time series. Journal of Business and Economic Statistics 11, 81–92.
Cobb, G. W. (1978) The problem of the Nile: conditional solution to a change-point problem. Biometrika 65, 243–51.
Examples
require(stats); require(graphics) par(mfrow = c(2, 2)) plot(Nile) acf(Nile) pacf(Nile) ar(Nile) # selects order 2 cpgram(ar(Nile)$resid) par(mfrow = c(1, 1)) arima(Nile, c(2, 0, 0))## Now consider missing values, following Durbin & Koopman NileNA <- Nile NileNA[c(21:40, 61:80)] <- NA arima(NileNA, c(2, 0, 0)) plot(NileNA) pred <- predict(arima(window(NileNA, 1871, 1890), c(2, 0, 0)), n.ahead = 20) lines(pred$pred, lty = 3, col = "red") lines(pred$pred + 2*pred$se, lty = 2, col = "blue") lines(pred$pred - 2*pred$se, lty = 2, col = "blue") pred <- predict(arima(window(NileNA, 1871, 1930), c(2, 0, 0)), n.ahead = 20) lines(pred$pred, lty = 3, col = "red") lines(pred$pred + 2*pred$se, lty = 2, col = "blue") lines(pred$pred - 2*pred$se, lty = 2, col = "blue")## Structural time series models par(mfrow = c(3, 1)) plot(Nile) ## local level model (fit <- StructTS(Nile, type = "level")) lines(fitted(fit), lty = 2)# contemporaneous smoothing lines(tsSmooth(fit), lty = 2, col = 4) # fixed-interval smoothing plot(residuals(fit)); abline(h = 0, lty = 3) ## local trend model (fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted pred <- predict(fit, n.ahead = 30) ## with 50% confidence interval ts.plot(Nile, pred$pred, pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)## Now consider missing values plot(NileNA) (fit3 <- StructTS(NileNA, type = "level")) lines(fitted(fit3), lty = 2) lines(tsSmooth(fit3), lty = 3) plot(residuals(fit3)); abline(h = 0, lty = 3)
Dataset imported from https://www.r-project.org.