swiss

November 27, 2023

Swiss Fertility and Socioeconomic Indicators (1888) Data

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking provinces of Switzerland at about 1888.

Usage

swiss

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

R project statistics dataset table
[,1] Fertility Ig, ‘common standardized fertility measure’
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % draftees receiving highest mark on army examination
[,4] Education % education beyond primary school for draftees.
[,5] Catholic % ‘catholic’ (as opposed to ‘protestant’).
[,6] Infant.Mortality live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as the demographic transition; i.e., its fertility was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but "Catholic" were scaled to [0, 1].

Note

Files for all 182 districts in 1888 and other years have been available at https://opr.princeton.edu/archive/pefp/switz.aspx.

They state that variables Examination and Education are averages for 1887, 1888 and 1889.

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Population Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number No 1-HD-O-2077.”

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Examples

require(stats); require(graphics)
pairs(swiss, panel = panel.smooth, main = "swiss data",
col = 3 + (swiss$Catholic > 50))
summary(lm(Fertility ~ . , data = swiss))

Attachments: csv, json

<iframe src="https://pmagunia.com/iframe/swiss.html" width="100%" height="100%" style="border:0px"></iframe>