The Real Number Axioms
October 4, 2020
The set of real numbers, $\mathbb{R}$, satisfies the following three sets of axioms.
The Field Axioms
- Closure Under Addition : $\forall$ x,y $\in$ $\mathbb{R},$ $\exists$ an entity called x+y which is also an element of $\mathbb{R}$.
- Associative Law Under Addition : $\forall$x,y,z $\in \mathbb{R},$ (x + y) + z = x + (y + z).
- Commutative Law Under Addition : $\forall$ x,y $\in \mathbb{R},$ x + y = y + x.
- Additive Identity : $\exists$ an entity denoted as '0' such that $\forall \in \mathbb{R},$ x + 0 = 0 + x = x.
- Additive Inverse : $\forall x \in \mathbb{R}, \exists $ a y $\in \mathbb{R}$ such that x + y = y + x = 0.
- Closure Under Multiplication : $\forall$ x,y $\exists$ an entity called x $\cdot$ y which is also an element of $\mathbb{R}$.
- Associative Law Under Multiplication : $\forall$ x,y,z $\in \mathbb{R}, (x \cdot y) \cdot z = x \cdot (y \cdot z).$
- Commutative Law Under Multiplication : $\forall x,y \in \mathbb{R}, x \cdot y = y \cdot x.$
- Multiplicative Identity : $\exists$ an entity denoted as '1' such that $\forall$ x $\in \mathbb{R}, x \cdot 1 = 1 \cdot x = x.$
- Multiplicative Inverse : $\forall x \in \mathbb{R}, \exists$ a $y \in \mathbb{R}$ such that $x \cdot y = y \cdot x = 1.$
- Distributive Law Under Multiplication : $\forall$ x, y, z $\in \mathbb{R}, x \cdot (y + z) = x \cdot y + x \cdot z.$
Order Axioms
- If x,y $\in \mathbb{R^+}$ then x+y and x $\cdot$ y are also elements of $\mathbb{R^+}.$
- For every x $\in \mathbb{R}$ only one of the following three conditions holds:
- x $\in \mathbb{R}^+.$
- x = 0.
- -x $\in \mathbb{R}^+.$
Completeness Axiom
- Least Upper Bound : Let $A$ be a set of real numbers that has a upper bound1. $x_{\text{lub}}$ $\in \mathbb{R}$ is called a least upper bound of $A$ if:
- $x_{\text{lub}}$ is an upper bound of $A$.
- $\forall$ upper bounds, $x$, which are elements of $A$, $x_{\text{lub}} \leq x.$
- 1Upper Bound
- $x_{\text{ub}}$ is an upper bound for set $A$ if $x_{\text{ub}} \in \mathbb{R}$ such that $\forall a \in A$, $x_{\text{ub}} > a.$
- Boundedness
- A set $A$ of real numbers is called bounded from above is $A$ has at least one upper bound. </dl>